Estimating the Unobservable Components of Electricity Demand Response with Inverse Optimization

Understanding and predicting the electricity demand responses to prices are critical activities for system operators, retailers, and regulators. While conventional machine learning and time series analyses have been adequate for the routine demand patterns that have adapted only slowly over many years, the emergence of active consumers with flexible assets such as solar-plus-storage systems, and … Read more

Inverse of the Gomory Corner Relaxation of Integer Programs

\(\) We analyze the inverse of integer programs (IPs) using the Gomory corner relaxation (GCR). We prove the inverse GCR is equivalent to the inverse of a shortest path problem, yielding a polyhedral representation of the GCR inverse-feasible region. We propose a linear program formulation for the inverse GCR under \(L_1\) and \(L_\infty\) norms.The inverse … Read more

Counterfactual Explanations for Linear Optimization

The concept of counterfactual explanations (CE) has emerged as one of the important concepts to understand the inner workings of complex AI systems. In this paper, we translate the idea of CEs to linear optimization and propose, motivate, and analyze three different types of CEs: strong, weak, and relative. While deriving strong and weak CEs … Read more

Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms

In Inverse Optimization (IO), an expert agent solves an optimization problem parametric in an exogenous signal. From a learning perspective, the goal is to learn the expert’s cost function given a dataset of signals and corresponding optimal actions. Motivated by the geometry of the IO set of consistent cost vectors, we introduce the “incenter” concept, … Read more

Hidden convexity in a class of optimization problems with bilinear terms

In this paper we identify a new class of nonconvex optimization problems that can be equivalently reformulated to convex ones. These nonconvex problems can be characterized by convex functions with bilinear arguments. We describe several examples of important applications that have this structure. A reformulation technique is presented which converts the problems in this class … Read more