Clustering methods to find representative periods for the optimization of energy systems: an initial framework and comparison

Modeling time-varying operations in complex energy systems optimization problems is often computationally intractable, and time-series input data are thus often aggregated to representative periods. In this work, we introduce a framework for using clustering methods for this purpose, and we compare both conventionally-used methods (k-means, k-medoids, and hierarchical clustering), and shape-based clustering methods (dynamic time … Read more

Improved Conic Reformulations for K-means Clustering

In this paper, we show that the popular K-means clustering problem can equivalently be reformulated as a conic program of polynomial size. The arising convex optimization problem is NP-hard, but amenable to a tractable semidefinite programming (SDP) relaxation that is tighter than the current SDP relaxation schemes in the literature. In contrast to the existing … Read more