A linearly convergent stochastic recursive gradient method for convex optimization

The stochastic recursive gradient algorithm (SARAH) [8] attracts much interest recently. It admits a simple recursive framework for updating stochastic gradient estimates. Motivated by this, in this paper, we propose a SARAH-I method incorporating importance sampling, whose linear conver- gence rate of the sequence of distances between iterates and the optima set is proven under … Read more

Convergence analysis of the Peaceman-Rachford splitting method for nonsmooth convex optimization

In this paper, we focus on the convergence analysis for the application of the Peaceman-Rachford splitting method to a convex minimization model whose objective function is the sum of a smooth and nonsmooth convex functions. The sublinear convergence rate in term of the worst-case O(1/t) iteration complexity is established if the gradient of the smooth … Read more

A Coordinate Gradient Descent Method for Linearly Constrained Smooth Optimization and Support Vector Machines Training

Support vector machines (SVMs) training may be posed as a large quadratic program (QP) with bound constraints and a single linear equality constraint. We propose a (block) coordinate gradient descent method for solving this problem and, more generally, linearly constrained smooth optimization. Our method is closely related to decomposition methods currently popular for SVM training. … Read more