On solving the MAX-SAT using sum of squares

We consider semidefinite programming (SDP) approaches for solving the maximum satisfiabilityproblem (MAX-SAT) and the weighted partial MAX-SAT. It is widely known that SDP is well-suitedto approximate the (MAX-)2-SAT. Our work shows the potential of SDP also for other satisfiabilityproblems, by being competitive with some of the best solvers in the yearly MAX-SAT competition.Our solver combines … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. Citation Department of Combinatorics & Optimization, University of Waterloo, … Read more

A Strictly Contractive Peaceman-Rachford Splitting Method for the Doubly Nonnegative Relaxation of the Minimum Cut Problem

The minimum cut problem, MC, and the special case of the vertex separator problem, consists in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize the number of edges cut after removing the k-th set. Previous work on this topic uses eigenvalue, semidefinite programming, SDP, … Read more

A semi-proximal-based strictly contractive Peaceman-Rachford splitting method

The Peaceman-Rachford splitting method is very efficient for minimizing sum of two functions each depends on its variable, and the constraint is a linear equality. However, its convergence was not guaranteed without extra requirements. Very recently, He et al. (SIAM J. Optim. 24: 1011 – 1040, 2014) proved the convergence of a strictly contractive Peaceman-Rachford … Read more

On the Step Size of Symmetric Alternating Directions Method of Multipliers

The alternating direction method of multipliers (ADMM) is an application of the Douglas-Rachford splitting method; and the symmetric version of ADMM which updates the Lagrange multiplier twice at each iteration is an application of the Peaceman-Rachford splitting method. Sometimes the symmetric ADMM works empirically; but theoretically its convergence is not guaranteed. It was recently found … Read more

Block-wise Alternating Direction Method of Multipliers for Multiple-block Convex Programming and Beyond

The alternating direction method of multipliers (ADMM) is a benchmark for solving a linearly constrained convex minimization model with a two-block separable objective function; and it has been shown that its direct extension to a multiple-block case where the objective function is the sum of more than two functions is not necessarily convergent. For the … Read more

Application of the Strictly Contractive Peaceman-Rachford Splitting Method to Multi-block Separable Convex Programming

Recently, a strictly contractive Peaceman- Rachford splitting method (SC-PRSM) was proposed to solve a convex minimization model with linear constraints and a separable objective function which is the sum of two functions without coupled variables. We show by an example that the SC-PRSM cannot be directly extended to the case where the objective function is … Read more

Convergence analysis of the Peaceman-Rachford splitting method for nonsmooth convex optimization

In this paper, we focus on the convergence analysis for the application of the Peaceman-Rachford splitting method to a convex minimization model whose objective function is the sum of a smooth and nonsmooth convex functions. The sublinear convergence rate in term of the worst-case O(1/t) iteration complexity is established if the gradient of the smooth … Read more