The Sard theorem for essentially smooth locally Lipschitz maps and applications in optimization

The classical Sard theorem states that the set of critical values of a $C^{k}$-map from an open set of $\R^n$ to $\R^p$ ($n\geq p$) has Lebesgue measure zero provided $k\geq n-p+1$. In the recent paper by Barbet, Dambrine, Daniilidis and Rifford, the so called “preparatory Sard theorem” for a compact countable set $I$ of $C^k$ … Read more

Lipschitz behavior of the robust regularization

To minimize or upper-bound the value of a function “robustly”, we might instead minimize or upper-bound the “epsilon-robust regularization”, defined as the map from a point to the maximum value of the function within an epsilon-radius. This regularization may be easy to compute: convex quadratics lead to semidefinite-representable regularizations, for example, and the spectral radius … Read more

Nonsmooth Quasiconcave Programming

This paper is devoted to optimality conditions for nonsmooth quasiconcave programming. Arrow and Enthoven (1961) formulate several economic problems into quasiconcave programming, and give a sufficient condition for smooth quasiconcave programming in their epoch-making and comprehensive paper. In this paper, generalized necessary and sufficient conditions for nonsmooth quasiconcave programming have been derived in terms of … Read more

Robust regularization

Given a real function on a Euclidean space, we consider its “robust regularization”: the value of this new function at any given point is the maximum value of the original function in a fixed neighbourhood of the point in question. This construction allows us to impose constraints in an optimization problem *robustly*, safeguarding a constraint … Read more