Exact Convergence Rates of Alternating Projections for Nontransversal Intersections

We study the exact convergence rate of the alternating projection method for the nontransversal intersection of a semialgebraic set and a linear subspace. If the linear subspace is a line, the exact rates are expressed by multiplicities of the defining polynomials of the semialgebraic set, or related power series. Our methods are also applied to … Read more

Alternative DC Algorithm for Partial DC programming

In this paper, we introduce an alternative DC algorithm for solving partial DC programs. This proposed algorithm is an natural extension of the standard DC algorithm. Furthermore, we also consider an inexact version of this alternative DC algorithm. The convergence of these proposed algorithms (both the exact and inexact versions) are investigated. The applications to … Read more

The proximal alternating direction method of multipliers in the nonconvex setting: convergence analysis and rates

We propose two numerical algorithms for minimizing the sum of a smooth function and the composition of a nonsmooth function with a linear operator in the fully nonconvex setting. The iterative schemes are formulated in the spirit of the proximal and, respectively, proximal linearized alternating direction method of multipliers. The proximal terms are introduced through … Read more

Convergence Analysis of DC Algorithm for DC programming with subanalytic data

DC Programming and DCA have been introduced by Pham Dinh Tao in 1986 and extensively developed by Le Thi Hoai An and Pham Dinh Tao since 1993. These approaches have been successfully applied to solving real life problems in their large scale setting. In this paper, by using the Lojasiewicz inequality for nonsmooth subanalytic functions, … Read more