Solving low-rank semidefinite programs via manifold optimization

We propose a manifold optimization approach to solve linear semidefinite programs (SDP) with low-rank solutions. This approach incorporates the augmented Lagrangian method and the Burer-Monteiro factorization, and features the adaptive strategies for updating the factorization size and the penalty parameter. We prove that the present algorithm can solve SDPs to global optimality, despite of the … Read more

Local Convergence of an Algorithm for Subspace Identification from Partial Data

GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an iterative algorithm for identifying a linear subspace of $\R^n$ from data consisting of partial observations of random vectors from that subspace. This paper examines local convergence properties of GROUSE, under assumptions on the randomness of the observed vectors, the randomness of the subset of elements observed at … Read more