A guided tour through the zoo of paired optimization problems

Many mathematical models base on the coupling of two or more optimization problems. This paper surveys possibilities to couple two optimization problems and discusses how solutions of the different models are interrelated with each other. The considered pairs stem from the fields of standard and generalized Nash equilibrium problems, optimistic and pessimistic bilevel problems, saddle … Read more

Efficiently Escaping Saddle Points in Bilevel Optimization

Bilevel optimization is one of the fundamental problems in machine learning and optimization. Recent theoretical developments in bilevel optimization focus on finding the first-order stationary points for nonconvex-strongly-convex cases. In this paper, we analyze algorithms that can escape saddle points in nonconvex-strongly-convex bilevel optimization. Specifically, we show that the perturbed approximate implicit differentiation (AID) with … Read more

Robust Sensitivity Analysis of the Optimal Value of Linear Programming

We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza- tion form, allowing for simultaneous perturbations in the objective coefficients and right-hand sides, where the perturbations are modeled in a compact, convex uncertainty set. This framework unifies and extends multiple approaches for LP sensitivity analysis in the literature and has close ties … Read more