A $\sqrt{5}/2$-approximation algorithm for optimal piecewise linear approximations of bounded variable products

We investigate the optimal piecewise linear approximation of the bivariate product $ xy $ over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the approximation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using … Read more

Solving Two-Trust-Region Subproblems using Semidefinite Optimization with Eigenvector Branching

Semidefinite programming (SDP) problems typically utilize the constraint that X-xx’ is PSD to obtain a convex relaxation of the condition X=xx’, where x is an n-vector. In this paper we consider a new hyperplane branching method for SDP based on using an eigenvector of X-xx’. This branching technique is related to previous work of Saxeena, … Read more

Tight compact extended relaxations for nonconvex quadratic programming problems with box constraints

Cutting planes from the Boolean Quadric Polytope (BQP) can be used to reduce the optimality gap of the NP-hard nonconvex quadratic program with box constraints (BoxQP). It is known that all cuts of the Chvátal-Gomory closure of the BQP are A-odd cycle inequalities. We obtain a compact extended relaxation of all A-odd cycle inequalities, which … Read more

A new dual for quadratic programming and its applications

The main outcomes of the paper are divided into two parts. First, we present a new dual for quadratic programs, in which, the dual variables are affine functions, and we prove strong duality. Since the new dual is intractable, we consider a modified version by restricting the feasible set. This leads to a new bound … Read more

Kronecker Product Constraints for Semidefinite Optimization

We consider semidefinite optimization problems that include constraints that G(x) and H(x) are positive semidefinite (PSD), where the components of the symmetric matrices G(x) and H(x) are affine functions of an n-vector x. In such a case we obtain a new constraint that a matrix K(x,X) is PSD, where the components of K(x,X) are affine … Read more

Quadratic Programs with Hollows

Let $\F$ be a quadratically constrained, possibly nonconvex, bounded set, and let $\E_1, \ldots, \E_l$ denote ellipsoids contained in $\F$ with non-intersecting interiors. We prove that minimizing an arbitrary quadratic $q(\cdot)$ over $\G := \F \setminus \cup_{k=1}^\ell \myint(\E_k)$ is no more difficult than minimizing $q(\cdot)$ over $\F$ in the following sense: if a given semidefinite-programming … Read more

Robust Sensitivity Analysis of the Optimal Value of Linear Programming

We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza- tion form, allowing for simultaneous perturbations in the objective coefficients and right-hand sides, where the perturbations are modeled in a compact, convex uncertainty set. This framework unifies and extends multiple approaches for LP sensitivity analysis in the literature and has close ties … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more

A Two-Variable Approach to the Two-Trust-Region Subproblem

The trust-region subproblem minimizes a general quadratic function over an ellipsoid and can be solved in polynomial time using a semidefinite-programming (SDP) relaxation. Intersecting the feasible set with a second ellipsoid results in the two-trust-region subproblem (TTRS). Even though TTRS can also be solved in polynomial-time, existing algorithms do not use SDP. In this paper, … Read more

Faster, but Weaker, Relaxations for Quadratically Constrained Quadratic Programs

We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than … Read more