Data-driven Multistage Distributionally Robust Optimization with Nested Distance

We study multistage distributionally robust linear optimization, where the uncertainty set is a ball of distributions defined through the nested distance (Pflug and Pichler 2012) centered at a scenario tree. This choice of uncertainty set, as opposed to alternatives like the Wasserstein distance between stochastic processes, takes account of information evolution, making it hedge against … Read more

Distributionally robust optimization with multiple time scales: valuation of a thermal power plant

The valuation of a real option is preferably done with the inclusion of uncertainties in the model, since the value depends on future costs and revenues, which are not perfectly known today. The usual value of the option is defined as the maximal expected (discounted) profit one may achieve under optimal management of the operation. … Read more