Optimistic Noise-Aware Sequential Quadratic Programming for Equality Constrained Optimization with Rank-Deficient Jacobians

We propose and analyze a sequential quadratic programming algorithm for minimizing a noisy nonlinear smooth function subject to noisy nonlinear smooth equality constraints. The algorithm uses a step decomposition strategy and, as a result, is robust to potential rank-deficiency in the constraints, allows for two different step size strategies, and has an early stopping mechanism. … Read more

An Interior-Point Algorithm for Continuous Nonlinearly Constrained Optimization with Noisy Function and Derivative Evaluations

An algorithm based on the interior-point methodology for solving continuous nonlinearly constrained optimization problems is proposed, analyzed, and tested. The distinguishing feature of the algorithm is that it presumes that only noisy values of the objective and constraint functions and their first-order derivatives are available. The algorithm is based on a combination of a previously … Read more

A Trust Region Method for the Optimization of Noisy Functions

Classical trust region methods were designed to solve problems in which function and gradient information are exact. This paper considers the case when there are bounded errors (or noise) in the above computations and proposes a simple modification of the trust region method to cope with these errors. The new algorithm only requires information about … Read more

Adaptive Finite-Difference Interval Estimation for Noisy Derivative-Free Optimization

A common approach for minimizing a smooth nonlinear function is to employ finite-difference approximations to the gradient. While this can be easily performed when no error is present within the function evaluations, when the function is noisy, the optimal choice requires information about the noise level and higher-order derivatives of the function, which is often … Read more

On the Numerical Performance of Derivative-Free Optimization Methods Based on Finite-Difference Approximations

The goal of this paper is to investigate an approach for derivative-free optimization that has not received sufficient attention in the literature and is yet one of the simplest to implement and parallelize. It consists of computing gradients of a smoothed approximation of the objective function (and constraints), and employing them within established codes. These … Read more

A Noise-Tolerant Quasi-Newton Method for Unconstrained Optimization

This paper describes an extension of the BFGS and L-BFGS methods for the minimization of a nonlinear function subject to errors. This work is motivated by applications that contain computational noise, employ low-precision arithmetic, or are subject to statistical noise. The classical BFGS and L-BFGS methods can fail in such circumstances because the updating procedure … Read more