A worst-case complexity analysis for Riemannian non-monotone line-search methods

In this paper we deal with non-monotone line-search methods to minimize a smooth cost function on a Riemannian manifold. In particular, we study the number of iterations necessary for this class of algorithms to obtain e-approximated stationary points. Specifically, we prove that under a regularity Lipschitz-type condition on the pullbacks of the cost function to … Read more

AN-SPS: Adaptive Sample Size Nonmonotone Line Search Spectral Projected Subgradient Method for Convex Constrained Optimization Problems

Article Download View AN-SPS: Adaptive Sample Size Nonmonotone Line Search Spectral Projected Subgradient Method for Convex Constrained Optimization Problems

Spectral Residual Method for Nonlinear Equations on Riemannian Manifolds

In this paper, the spectral algorithm for nonlinear equations (SANE) is adapted to the problem of finding a zero of a given tangent vector field on a Riemannian manifold. The generalized version of SANE uses, in a systematic way, the tangent vector field as a search direction and a continuous real–valued function that adapts this … Read more

A Generalized Worst-Case Complexity Analysis for Non-Monotone Line Searches

We study the worst-case complexity of a non-monotone line search framework that covers a wide variety of known techniques published in the literature. In this framework, the non-monotonicity is controlled by a sequence of nonnegative parameters. We obtain complexity bounds to achieve approximate first-order optimality even when this sequence is not summable. Article Download View … Read more