AS-BOX: Additional Sampling Method for Weighted Sum Problems with Box Constraints

A class of optimization problems characterized by a weighted finite-sum objective function subject to box constraints is considered. We propose a novel stochastic optimization method, named AS-BOX (Additional Sampling for BOX constraints), that combines projected gradient directions with adaptive variable sample size strategies and nonmonotone line search. The method dynamically adjusts the batch size based … Read more

ASPEN: An Additional Sampling Penalty Method for Finite-Sum Optimization Problems with Nonlinear Equality Constraints

We propose a novel algorithm for solving non-convex, nonlinear equality-constrained finite-sum optimization problems. The proposed algorithm incorporates an additional sampling strategy for sample size update into the well-known framework of quadratic penalty methods. Thus, depending on the problem at hand, the resulting method may exhibit a sample size strategy ranging from a mini-batch on one … Read more

Spectral Projected Subgradient Method for Nonsmooth Convex Optimization Problems

We consider constrained optimization problems with a nonsmooth objective function in the form of mathematical expectation. The Sample Average Approximation (SAA) is used to estimate the objective function and variable sample size strategy is employed. The proposed algorithm combines an SAA subgradient with the spectral coefficient in order to provide a suitable direction which improves … Read more

An inexact restoration-nonsmooth algorithm with variable accuracy for stochastic nonsmooth convex optimization problems in machine learning and stochastic linear complementarity problems

We study unconstrained optimization problems with nonsmooth and convex objective function in the form of a mathematical expectation. The proposed method approximates the expected objective function with a sample average function using Inexact Restoration-based adapted sample sizes. The sample size is chosen in an adaptive manner based on Inexact Restoration. The algorithm uses line search … Read more