Pareto-optimal trees and Pareto forest: a bi-objective optimization model for binary classification

As inherently transparent models, classification trees play a central role in interpretable machine learning by providing easily traceable decision paths that allow users to understand how input features contribute to specific predictions. In this work, we introduce a new class of interpretable binary classification models, named Pareto-optimal trees, which aim at combining the complementary strengths … Read more

Mixed-Integer Linear Optimization for Semi-Supervised Optimal Classification Trees

Decision trees are one of the most famous methods for solving classification problems, mainly because of their good interpretability properties. Moreover, due to advances in recent years in mixed-integer optimization, several models have been proposed to formulate the problem of computing optimal classification trees. The goal is, given a set of labeled points, to split … Read more

Strong Optimal Classification Trees

Decision trees are among the most popular machine learning models and are used routinely in applications ranging from revenue management and medicine to bioinformatics. In this paper, we consider the problem of learning optimal binary classification trees with univariate splits. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality … Read more