Postponing the Choice of the Barrier Parameter in Mehrotra-Type Predictor-Corrector Algorithms

In \cite{SPT} the authors considered a variant of Mehrotra’s predictor-corrector algorithm that has been widely used in several IPMs based optimization packages. By an example they showed that this variant might make very small steps in order to keep the iterate in a certain neighborhood of the central path, that itself implies the inefficiency of … Read more

New Complexity Analysis of IIPMs for Linear Optimization Based on a Specific Self-Regular Function

Primal-dual Interior-Point Methods (IPMs) have shown their ability in solving large classes of optimization problems efficiently. Feasible IPMs require a strictly feasible starting point to generate the iterates that converge to an optimal solution. The self-dual embedding model provides an elegant solution to this problem with the cost of slightly increasing the size of the … Read more

On Mehrotra-Type Predictor-Corrector Algorithms

In this paper we discuss the polynomiality of Mehrotra-type predictor-corrector algorithms. We consider a variant of the original prototype of the algorithm that has been widely used in several IPM based optimization packages, for which no complexity result is known to date. By an example we show that in this variant the usual Mehrotra-type adaptive … Read more

A New Primal-Dual Interior-Point Algorithm for Second-Order Cone Optimization

We present a primal-dual interior-point algorithm for second-order conic optimization problems based on a specific class of kernel functions. This class has been investigated earlier for the case of linear optimization problems. In this paper we derive the complexity bounds $O(\sqrt{N})(\log N)\log\frac{N}{\epsilon})$ for large- and $O(\sqrt{N})\log\frac{N}{\epsilon}$ for small- update methods, respectively. Here $N$ denotes the … Read more

Adaptive Large Neighborhood Self-Regular Predictor-Corrector IPMs for LO

It is known that predictor-corrector methods in a large neighborhood of the central path are among the most efficient interior point methods (IPMs) for linear optimization (LO) problems. The best iteration bound based on the classical logarithmic barrier function is $O\left(n\log{\frac{n}{\epsilon}}\right)$. In this paper we propose a family of self-regular proximity based predictor-corrector (SR-PC) IPM … Read more

An Adaptive Self-Regular Proximity Based Large-Update IPM for LO

Primal-Dual Interior-Point Methods (IPMs) have shown their power in solving large classes of optimization problems. However, there is still a gap between the practical behavior of these algorithms and their theoretical worst-case complexity results with respect to the update strategies of the duality gap parameter in the algorithm. The so-called small-update IPMs enjoy the best … Read more

A Comparative Study of New Barrier Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization

Recently, so-called self-regular barrier functions for primal-dual interior-point methods (IPMs) for linear optimization were introduced. Each such barrier function is determined by its (univariate) self-regular kernel function. We introduce a new class of kernel functions. The class is defined by some simple conditions on the kernel function and its derivatives. These properties enable us to … Read more

The Complexity of Self-Regular Proximity Based Infeasible IPMs

Primal-Dual Interior-Point Methods (IPMs) have shown their power in solving large classes of optimization problems. In this paper a self-regular proximity based Infeasible Interior Point Method (IIPM) is proposed for linear optimization problems. First we mention some interesting perties of a specific self-regular proximity function, studied recently by Peng and Terlaky, and use it to … Read more

A predictor-corrector algorithm for linear optimization based on a specific self-regular proximity function

It is well known that the so-called first-order predictor-corrector methods working in a large neighborhood of the central path are among the most efficient interior-point methods (IPMs) for linear optimization (LO) problems. However, the best known iteration complexity of this type of methods is $O\br{n \log\frac{(x^0)^Ts^0}{\varepsilon}}$. It is of interests to investigate whether the complexity … Read more

First- and Second-Order Methods for Semidefinite Programming

In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have … Read more