Stochastic Optimization Models of Insurance Mathematics

The paper overviews stochastic optimization models of insurance mathematics and methods for their solution from the point of view of stochastic programming and stochastic optimal control methodology, with vector optimality criteria. The evolution of an insurance company’s capital is considered in discrete time. The main random variables, which influence this evolution, are levels of payments, … Read more

A Counterexample to “Threshold Boolean form for joint probabilistic constraints with random technology matrix”

Recently, in the paper “Threshold Boolean form for joint probabilistic constraints with random technology matrix” (Math. Program. 147:391–427, 2014), Kogan and Lejeune proposed a set of mixed-integer programming formulations for probabilistically constrained stochastic programs having random constraint matrix and finite support distribution. We show that the proposed formulations do not in general correctly model such … Read more

Covering Linear Programming with Violations

We consider a class of linear programs involving a set of covering constraints of which at most k are allowed to be violated. We show that this covering linear program with violation is strongly NP-hard. In order to improve the performance of mixed-integer programming (MIP) based schemes for these problems, we introduce and analyze a … Read more

A Branch-and-Cut Decomposition Algorithm for Solving Chance-Constrained Mathematical Programs with Finite Support

We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with nite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to nd provably good solutions in certain very special cases. Our approach … Read more

On Mixing Sets Arising in Chance-Constrained Programming

The mixing set with a knapsack constraint arises in deterministic equivalent of probabilistic programming problems with finite discrete distributions. We first consider the case that the probabilistic program has equal probabilities for each scenario. We study the resulting mixing set with a cardinality constraint and propose facet-defining inequalities that subsume known explicit inequalities for this … Read more

New Formulations for Optimization Under Stochastic Dominance Constraints

Stochastic dominance constraints allow a decision-maker to manage risk in an optimization setting by requiring their decision to yield a random outcome which stochastically dominates a reference random outcome. We present new integer and linear programming formulations for optimization under first and second-order stochastic dominance constraints, respectively. These formulations are more compact than existing formulations, … Read more

A Sample Approximation Approach for Optimization with Probabilistic Constraints

We study approximations of optimization problems with probabilistic constraints in which the original distribution of the underlying random vector is replaced with an empirical distribution obtained from a random sample. We show that such a sample approximation problem with risk level larger than the required risk level will yield a lower bound to the true … Read more

An integer programming approach for linear programs with probabilistic constraints

Linear programs with joint probabilistic constraints (PCLP) are difficult to solve because the feasible region is not convex. We consider a special case of PCLP in which only the right-hand side is random and this random vector has a finite distribution. We give a mixed-integer programming formulation for this special case and study the relaxation … Read more