Complexity of normalized stochastic first-order methods with momentum under heavy-tailed noise

In this paper, we propose practical normalized stochastic first-order methods with Polyak momentum, multi-extrapolated momentum, and recursive momentum for solving unconstrained optimization problems. These methods employ dynamically updated algorithmic parameters and do not require explicit knowledge of problem-dependent quantities such as the Lipschitz constant or noise bound. We establish first-order oracle complexity results for finding … Read more

Relative-Continuity” for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent

The usual approach to developing and analyzing first-order methods for non-smooth (stochastic or deterministic) convex optimization assumes that the objective function is uniformly Lipschitz continuous with parameter $M_f$. However, in many settings the non-differentiable convex function $f(\cdot)$ is not uniformly Lipschitz continuous — for example (i) the classical support vector machine (SVM) problem, (ii) the … Read more