On the Augmented Lagrangian Dual for Integer Programming

We consider the augmented Lagrangian dual for integer programming, and provide a primal characterization of the resulting bound. As a corollary, we obtain proof that the augmented Lagrangian is a strong dual for integer programming. We are able to show that the penalty parameter applied to the augmented Lagrangian term may be placed at a … Read more

Preprocessing and Reduction for Degenerate Semidefinite Programs

This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidefinite programming, SDP, problems, i.e.,~programs for which Slater’s constraint qualification, existence of strictly feasible points, (nearly) fails. Current popular algorithms for semidefinite programming rely on \emph{primal-dual interior-point, p-d i-p} methods. These algorithms require Slater’s constraint qualification for both the primal and dual problems. This … Read more

On the Equivalencey of Linear Programming Problems and Zero-Sum Games

In 1951, Dantzig showed the equivalence of linear programming and two-person zero-sum games. However, in the description of his reduction from linear programming to zero-sum games, he noted that there was one case in which his reduction does not work. This also led to incomplete proofs of the relationship between the Minmax Theorem of game … Read more

Comments on “Dual Methods for Nonconvex Spectrum Optimization of Multicarrier Systems”

Yu and Liu’s strong duality theorem under the time-sharing property requires the Slater condition to hold for the considered general nonconvex problem, what is satisfied for the specific application. We further extend the scope of the theorem under Ky Fan convexity which is slightly weaker than Yu&Lui’s time-sharing property. ArticleDownload View PDF