Block Coordinate Proximal Gradient Method for Nonconvex Optimization Problems: Convergence Analysis

We propose a block coordinate proximal gradient method for a composite minimization problem with two nonconvex function components in the objective while only one of them is assumed to be differentiable. Under some per-block Lipschitz-like conditions based on Bregman distance, but without the global Lipschitz continuity of the gradient of the differentiable function, we prove … Read more

An L1 Elastic Interior-Point Method for Mathematical Programs with Complementarity Constraints

We propose an interior-point algorithm based on an elastic formulation of the L1-penalty merit function for mathematical programs with complementarity constraints. The method generalizes that of Gould, Orban and Toint (2003) and naturally converges to a strongly stationary point or delivers a certificate of degeneracy without recourse to second-order intermediate solutions. Remarkably, the method allows … Read more

Elastic-Mode Algorithms for Mathematical Programs with Equilibrium Constraints: Global Convergence and Stationarity Properties

The elastic-mode formulation of the problem of minimizing a nonlinear function subject to equilibrium constraints has appealing local properties in that, for a finite value of the penalty parameter, local solutions satisfying first- and second-order necessary optimality conditions for the original problem are also first- and second-order points of the elastic-mode formulation. Here we study … Read more