Using a Factored Dual in Augmented Lagrangian Methods for Semidefinite Programming

In the context of augmented Lagrangian approaches for solving semidefinite programming problems, we investigate the possibility of eliminating the positive semidefinite constraint on the dual matrix by employing a factorization. Hints on how to deal with the resulting unconstrained maximization of the augmented Lagrangian are given. We further propose to use the approximate maximum of … Read more

Lecture notes: Semidefinite programs and harmonic analysis

Lecture notes for the tutorial at the workshop HPOPT 2008 – 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands. Citation arXiv:0809.2017v1 [math.OC] Article Download View Lecture notes: Semidefinite programs and harmonic analysis

A Simplified/Improved HKM Direction for Certain Classes of Semidefinite Programming

Semidefinite Programming (SDP) provides strong bounds for many NP-hard combinatorial problems. Arguably the most popular/efficient search direction for solving SDPs using a primal-dual interior point (p-d i-p) framework is the {\em HKM direction}. This direction is a Newton direction found from the linearization of a symmetrized version of the optimality conditions. For many of the … Read more