Computing Counterfactual Explanations for Linear Optimization: A New Class of Bilevel Models and a Tailored Penalty Alternating Direction Method

Explainable artificial intelligence is one of the most important trends in modern machine-learning research. The idea is to explain the outcome of a model by presenting a certain change in the input of the model so that the outcome changes significantly. In this paper, we study this question for linear optimization problems as an automated … Read more

Correction to: A Lagrangian dual method for two-stage robust optimization with binary uncertainties

We provide a correction to the sufficient conditions under which closed-form expressions for the optimal Lagrange multiplier are provided in Subramanyam (2022). We first present a simple counterexample where the original conditions are insufficient, highlight where the original proof fails, and then provide modified conditions along with a correct proof of their validity. Finally, although … Read more

Exact Augmented Lagrangian Duality for Nonconvex Mixed-Integer Nonlinear Optimization

In the context of mixed-integer nonlinear problems (MINLPs), it is well-known that strong duality does not hold in general if the standard Lagrangian dual is used. Hence, we consider the augmented Lagrangian dual (ALD), which adds a nonlinear penalty function to the classic Lagrangian function. For this setup, we study conditions under which the ALD … Read more

On Coupling Constraints in Linear Bilevel Optimization

It is well-known that coupling constraints in linear bilevel optimization can lead to disconnected feasible sets, which is not possible without coupling constraints. However, there is no difference between linear bilevel problems with and without coupling constraints w.r.t. their complexity-theoretical hardness. In this note, we prove that, although there is a clear difference between these … Read more

Using Column Generation in Column-and-Constraint Generation for Adjustable Robust Optimization

Adjustable robust optimization (ARO) is a powerful tool to model problems that have uncertain data and that feature a two-stage decision making process. Computationally, they are often addressed using the column-and-constraint generation (CCG) algorithm introduced by Zhao and Zeng in 2012. While it was empirically shown that the algorithm scales well if all second-stage decisions … Read more

Exact Approaches for Convex Adjustable Robust Optimization

Adjustable Robust Optimization (ARO) is a paradigm for facing uncertainty in a decision problem, in case some recourse actions are allowed after the actual value of all input parameters is revealed. While several approaches have been introduced for the linear case, little is known regarding exact methods for the convex case. In this work, we … Read more

Adjustable robust optimization with discrete uncertainty

In this paper, we study Adjustable Robust Optimization (ARO) problems with discrete uncertainty. Under a very general modeling framework, we show that such two-stage robust problems can be exactly reformulated as ARO problems with objective uncertainty only. This reformulation is valid with and without the fixed recourse assumption and is not limited to continuous wait-and-see … Read more

Adjustable robust optimization with objective uncertainty

In this work, we study optimization problems where some cost parameters are not known at decision time and the decision flow is modeled as a two-stage process within a robust optimization setting. We address general problems in which all constraints (including those linking the first and the second stages) are defined by convex functions and … Read more