From CVaR to Uncertainty Set: Implications in Joint Chance Constrained Optimization

In this paper we review the different tractable approximations of individual chance constraint problems using robust optimization on a varieties of uncertainty set, and show their interesting connections with bounds on the condition-value-at-risk CVaR measure popularized by Rockafellar and Uryasev. We also propose a new formulation for approximating joint chance constrained problems that improves upon … Read more

New class of limited-memory variationally-derived variable metric methods

A new family of limited-memory variationally-derived variable metric or quasi-Newton methods for unconstrained minimization is given. The methods have quadratic termination property and use updates, invariant under linear transformations. Some encouraging numerical experience is reported. CitationTechnical Report V-973. Prague, ICS AS CR 2006.ArticleDownload View PDF

Inverse Stochastic Linear Programming

Inverse optimization perturbs objective function to make an initial feasible solution optimal with respect to perturbed objective function while minimizing cost of perturbation. We extend inverse optimization to two-stage stochastic linear programs. Since the resulting model grows with number of scenarios, we present two decomposition approaches for solving these problems. CitationUnpublished: 07-1, University of Pittsburgh, … Read more