Two limited-memory optimization methods with minimum violation of the previous quasi-Newton equations

Limited-memory variable metric methods based on the well-known BFGS update are widely used for large scale optimization. The block version of the BFGS update, derived by Schnabel (1983), Hu and Storey (1991) and Vl·cek and Luk·san (2019), satis¯es the quasi-Newton equations with all used di®erence vectors and for quadratic objective functions gives the best improvement … Read more

A limited-memory optimization method using the infinitely many times repeated BNS update and conjugate directions

To improve the performance of the limited-memory variable metric L-BFGS method for large scale unconstrained optimization, repeating of some BFGS updates was proposed in [1, 2]. But the suitable extra updates need to be selected carefully, since the repeating process can be time consuming. We show that for the limited-memory variable metric BNS method, matrix … Read more

Interior-point algorithms for convex optimization based on primal-dual metrics

We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to … Read more

A modified limited-memory BNS method for unconstrained minimization based on the conjugate directions idea

A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization is proposed, which consist in corrections (derived from the idea of conjugate directions) of the used difference vectors for better satisfaction of previous quasi-Newton conditions. In comparison with [16], where a similar approach is used, correction vectors from more previous iterations … Read more

Modifications of the limited-memory BNS method for better satisfaction of previous quasi-Newton conditions

Several modifications of the limited-memory variable metric BNS method for large scale unconstrained optimization are proposed, which consist in corrections (derived from the idea of conjugate directions) of the used di®erence vectors to improve satisfaction of previous quasi-Newton conditions, utilizing information from previous or subsequent iterations. In case of quadratic objective functions, conjugacy of all … Read more

A conjugate directions approach to improve the limited-memory BFGS method

Simple modifiations of the limited-memory BFGS method (L-BFGS) for large scale unconstrained optimization are considered, which consist in corrections (derived from the idea of conjugate directions) of the used difference vectors, utilizing information from the preceding iteration. In case of quadratic objective functions, the improvement of convergence is the best one in some sense and … Read more

Generalizations of the limited-memory BFGS method based on quasi-product form of update

Two families of limited-memory variable metric or quasi-Newton methods for unconstrained minimization based on quasi-product form of update are derived. As for the first family, four variants how to utilize the Strang recurrences for the Broyden class of variable metric updates are investigated; three of them use the same number of stored vectors as the … Read more

Transformations enabling to construct limited-memory Broyden class methods

The Broyden class of quasi-Newton updates for inverse Hessian approximation are transformed to the formal BFGS update, which makes possible to generalize the well-known Nocedal method based on the Strang recurrences to the scaled limited-memory Broyden family, using the same number of stored vectors as for the limited-memory BFGS method. Two variants are given, the … Read more

Limited-memory projective variable metric methods for unconstrained minimization

A new family of limited-memory variable metric or quasi-Newton methods for unconstrained minimization is given. The methods are based on a positive definite inverse Hessian approximation in the form of the sum of identity matrix and two low rank matrices, obtained by the standard scaled Broyden class update. To reduce the rank of matrices, various … Read more

Primal interior point method for minimization of generalized minimax functions

In this report, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning … Read more