Computationally Efficient Approach for the Minimization of Volume Constrained Vector-Valued Ginzburg-Landau Energy Functional
The minimization of volume constrained vector-valued Ginzburg-Landau energy functional is considered in the present study. It has many applications in computational science and engineering, like the conservative phase separation in multiphase systems (such as the spinodal decomposition), phase coarsening in multiphase systems, color image segmentation and optimal space partitioning. A computationally efficient algorithm is presented … Read more