Behavior of accelerated gradient methods near critical points of nonconvex functions

We examine the behavior of accelerated gradient methods in smooth nonconvex unconstrained optimization, focusing in particular on their behavior near strict saddle points. Accelerated methods are iterative methods that typically step along a direction that is a linear combination of the previous step and the gradient of the function evaluated at a point at or … Read more

Accelerated First-Order Methods for Hyperbolic Programming

A framework is developed for applying accelerated methods to general hyperbolic programming, including linear, second-order cone, and semidefinite programming as special cases. The approach replaces a hyperbolic program with a convex optimization problem whose smooth objective function is explicit, and for which the only constraints are linear equations (one more linear equation than for the … Read more

Generalized Uniformly Optimal Methods for Nonlinear Programming

In this paper, we present a generic framework to extend existing uniformly optimal convex programming algorithms to solve more general nonlinear, possibly nonconvex, optimization problems. The basic idea is to incorporate a local search step (gradient descent or Quasi-Newton iteration) into these uniformly optimal convex programming methods, and then enforce a monotone decreasing property of … Read more

A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions

We analyze alternating descent algorithms for minimizing the sum of a quadratic function and block separable non-smooth functions. In case the quadratic interactions between the blocks are pairwise, we show that the schemes can be accelerated, leading to improved convergence rates with respect to related accelerated parallel proximal descent. As an application we obtain very … Read more

An adaptive accelerated first-order method for convex optimization

This paper presents a new accelerated variant of Nesterov’s method for solving composite convex optimization problems in which certain acceleration parameters are adaptively (and aggressively) chosen so as to substantially improve its practical performance compared to existing accelerated variants while at the same time preserve the optimal iteration-complexity shared by these methods. Computational results are … Read more