A New Unblocking Technique to Warmstart Interior Point Methods based on Sensitivity Analysis

One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived lack of an efficient warmstarting scheme which would enable the use of information from a previous solution of a similar problem. Recently there has been renewed interest in the subject. A common problem with warmstarting for IPM is that an advanced … Read more

A Warm-Start Approach for Large-Scale Stochastic Linear Programs

We describe a method of generating a warm-start point for interior point methods in the context of stochastic programming. Our approach exploits the structural information of the stochastic problem so that it can be seen as a structure-exploiting initial point generator. We solve a small-scale version of the problem corresponding to a reduced event tree … Read more

Exploiting Structure in Parallel Implementation of Interior Point Methods for Optimization

OOPS is an object oriented parallel solver using the primal dual interior point methods. Its main component is an object-oriented linear algebra library designed to exploit nested block structure that is often present is truly large-scale optimization problems. This is achieved by treating the building blocks of the structured matrices as objects, that can use … Read more

Solving Nonlinear Portfolio Optimization Problems with the Primal-Dual Interior Point Method

Stochastic programming is recognized as a powerful tool to help decision making under uncertainty in financial planning. The deterministic equivalent formulations of these stochastic programs have huge dimensions even for moderate numbers of assets, time stages and scenarios per time stage. So far models treated by mathematical programming approaches have been limited to simple linear … Read more

Parallel Interior Point Solver for Structured Quadratic Programs: Application to Financial Planning Problems

Issues of implementation of a library for parallel interior-point methods for quadratic programming are addressed. The solver can easily exploit any special structure of the underlying optimization problem. In particular, it allows a nested embedding of structures and by this means very complicated real-life optimization problems can be modeled. The efficiency of the solver is … Read more