Efficient solution of quadratically constrained quadratic subproblems within the MADS algorithm

The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: … Read more

A progressive barrier derivative-free trust-region algorithm for constrained optimization

We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible and and around the best infeasible solutions found so far. These models are optimized within a trust region, and the progressive barrier methodology handles the constraints by progressively pushing the infeasible solutions toward the … Read more

Use of quadratic models with mesh adaptive direct search for constrained black box optimization

We consider a derivative-free optimization, and in particular black box optimization, where the functions to be minimized and the functions representing the constraints are given by black boxes without derivatives. Two fundamental families of methods are available: model-based methods and directional direct search algorithms. This work exploits the flexibility of the second type of methods … Read more

Bilevel Derivative-Free Optimization and its Application to Robust Optimization

We address bilevel programming problems when the derivatives of both the upper and the lower level objective functions are unavailable. The core algorithms used for both levels are trust-region interpolation-based methods, using minimum Frobenius norm quadratic models when the number of points is smaller than the number of basis components. We take advantage of the … Read more

A Derivative-Free Algorithm for the Least-square minimization

We develop a framework for a class of derivative-free algorithms for the least-squares minimization problem. These algorithms are based on polynomial interpolation models and are designed to take advantages of the problem structure. Under suitable conditions, we establish the global convergence and local quadratic convergence properties of these algorithms. Promising numerical results indicate the algorithm … Read more

Global Convergence of General Derivative-Free Trust-Region Algorithms to First and Second Order Critical Points

In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, … Read more

An algorithmic framework for convex mixed integer nonlinear programs

This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent … Read more

Geometry of Sample Sets in Derivative Free Optimization. Part II: Polynomial Regression and Underdetermined Interpolation

In the recent years, there has been a considerable amount of work in the development of numerical methods for derivative free optimization problems. Some of this work relies on the management of the geometry of sets of sampling points for function evaluation and model building. In this paper, we continue the work developed in [Conn, … Read more

Error Estimates and Poisedness in Multivariate Polynomial Interpolation

We show how to derive error estimates between a function and its interpolating polynomial and between their corresponding derivatives. The derivation is based on a new definition of well-poisedness for the interpolation set, directly connecting the accuracy of the error estimates with the geometry of the points in the set. This definition is equivalent to … Read more