Learning for Spatial Branching: An Algorithm Selection Approach

The use of machine learning techniques to improve the performance of branch-and-bound optimization algorithms is a very active area in the context of mixed integer linear problems, but little has been done for non-linear optimization. To bridge this gap, we develop a learning framework for spatial branching and show its efficacy in the context of … Read more

A Dynamic Inequality Generation Scheme for Polynomial Programming

Hierarchies of semidefinite programs have been used to approximate or even solve polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small size. In this paper, we propose a dynamic inequality generation scheme to generate valid polynomial inequalities for general polynomial programs. When used iteratively, this scheme improves … Read more

Second-Order Cone Relaxations for Binary Quadratic Polynomial Programs

Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, second-order cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, we … Read more

A Branch-and-Cut Algorithm based on Semidefinite Programming for the Minimum k-Partition Problem

The minimum k-partition (MkP) problem is the problem of partitioning the set of vertices of a graph into k disjoint subsets so as to minimize the total weight of the edges joining vertices in the same partition. The main contribution of this paper is the design and implementation of a branch-and-cut algorithm based on semidefinite … Read more