Computational advances in polynomial optimization: RAPOSa, a freely available global solver

In this paper we introduce RAPOSa, a global optimization solver specifically designed for (continuous) polynomial programming problems with box-constrained variables. Written entirely in C++, RAPOSa is based on the Reformulation-Linearization Technique developed by Sherali and Tuncbilek (1992) and subsequently improved in Sherali et al. (2012a), Sherali et al. (2012b) and Dalkiran and Sherali (2013). We … Read more

Optimality conditions for minimizers at infinity in polynomial programming

In this paper we study necessary optimality conditions for the optimization problem $$\textrm{infimum}f_0(x) \quad \textrm{ subject to } \quad x \in S,$$ where $f_0 \colon \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function and $S \subset \mathbb{R}^n$ is a set defined by polynomial inequalities. Assume that the problem is bounded below and has the Mangasarian–Fromovitz property … Read more

A Dynamic Inequality Generation Scheme for Polynomial Programming

Hierarchies of semidefinite programs have been used to approximate or even solve polynomial programs. This approach rapidly becomes computationally expensive and is often tractable only for problems of small size. In this paper, we propose a dynamic inequality generation scheme to generate valid polynomial inequalities for general polynomial programs. When used iteratively, this scheme improves … Read more

Extension of the semidefinite characterization of sum of squares functional systems to algebraic structures

We extend Nesterov’s semidefinite programming (SDP) characterization of the cone of functions that can be expressed as sums of squares (SOS) of functions in finite dimensional linear functional spaces. Our extension is to algebraic systems that are endowed with a binary operation which map two elements of a finite dimensional vector space to another vector … Read more

Exploiting Equalities in Polynomial Programming

We propose a novel solution approach for polynomial programming problems with equality constraints. By means of a generic transformation, we show that solution schemes for the (typically simpler) problem without equalities can be used to address the problem with equalities. In particular, we propose new solution schemes for mixed binary programs, pure 0-1 quadratic programs, … Read more