Bi-level multi-criteria optimization to include linear energy transfer into proton treatment planning

In proton therapy treatment planning, the aim is to ensure tumor control while sparing the various surrounding risk structures. The biological effect of the irradiation depends on both physical dose and linear energy transfer (LET). In order to include LET alongside physical dose in plan creation, we propose to formulate the proton treatment planning problem … Read more

Learning for Spatial Branching: An Algorithm Selection Approach

The use of machine learning techniques to improve the performance of branch-and-bound optimization algorithms is a very active area in the context of mixed integer linear problems, but little has been done for non-linear optimization. To bridge this gap, we develop a learning framework for spatial branching and show its efficacy in the context of … Read more

A Unified Approach to Mixed-Integer Optimization Problems With Logical Constraints

We propose a unified framework to address a family of classical mixed-integer optimization problems with logically constrained decision variables, including network design, facility location, unit commitment, sparse portfolio selection, binary quadratic optimization, sparse principal component analysis and sparse learning problems. These problems exhibit logical relationships between continuous and discrete variables, which are usually reformulated linearly … Read more