New Results on the Polyak Stepsize: Tight Convergence Analysis and Universal Function Classes

In this paper, we revisit a classical adaptive stepsize strategy for gradient descent: the Polyak stepsize (PolyakGD), originally proposed in Polyak (1969). We study the convergence behavior of PolyakGD from two perspectives: tight worst-case analysis and universality across function classes. As our first main result, we establish the tightness of the known convergence rates of … Read more

On Relatively Smooth Optimization over Riemannian Manifolds

We study optimization over Riemannian embedded submanifolds, where the objective function is relatively smooth in the ambient Euclidean space. Such problems have broad applications but are still largely unexplored. We introduce two Riemannian first-order methods, namely the retraction-based and projection-based Riemannian Bregman gradient methods, by incorporating the Bregman distance into the update steps. The retraction-based … Read more