Multipliers Correction Methods for Optimization Problems over the Stiefel Manifold

We propose a class of multipliers correction methods to minimize a differentiable function over the Stiefel manifold. The proposed methods combine a function value reduction step with a proximal correction step. The former one searches along an arbitrary descent direction in the Euclidean space instead of a vector in the tangent space of the Stiefel … Read more

An Orthogonalization-free Parallelizable Framework for All-electron Calculations in Density Functional Theory

All-electron calculations play an important role in density functional theory, in which improving computational efficiency is one of the most needed and challenging tasks. In the model formulations, both nonlinear eigenvalue problem and total energy minimization problem pursue orthogonal solutions. Most existing algorithms for solving these two models invoke orthogonalization process either explicitly or implicitly … Read more

Parallelizable Algorithms for Optimization Problems with Orthogonality Constraints

To construct a parallel approach for solving optimization problems with orthogonality constraints is usually regarded as an extremely difficult mission, due to the low scalability of the orthonormalization procedure. However, such demand is particularly huge in some application areas such as materials computation. In this paper, we propose a proximal linearized augmented Lagrangian algorithm (PLAM) … Read more

A New First-order Algorithmic Framework for Optimization Problems with Orthogonality Constraints

In this paper, we consider a class of optimization problems with orthogonality constraints, the feasible region of which is called the Stiefel manifold. Our new framework combines a function value reduction step with a correction step. Different from the existing approaches, the function value reduction step of our algorithmic framework searches along the standard Euclidean … Read more