The proximal point method for locally Lipschitz functions in multiobjective optimization

This paper studies the constrained multiobjective optimization problem of finding Pareto critical points of vector-valued functions. The proximal point method considered by Bonnel et al. (SIAM J. Optim., 4 (2005), pp. 953-970) is extended to locally Lipschitz functions in the finite dimensional multiobjective setting. To this end, a new approach for convergence analysis of the … Read more

How to Reach his Desires: Variational Rationality and the Equilibrium Problem on Hadamard Manifolds

In this paper we present a sufficient condition for the existence of a solution for an \mbox{equilibrium} problem on an Hadamard manifold and under suitable assumptions on the sectional curvature, we \mbox{propose} a framework for the convergence analysis of a proximal point algorithm to solve this equilibrium \mbox{problem}. Finally, we offer an application to the … Read more

Existence Results for Particular Instances of the Vector Quasi-Equilibrium Problem on Hadamard Manifolds

We show the validity of select existence results for a vector optimization problem, and a variational inequality. More generally, we consider generalized vector quasi-variational inequalities, as well as, fixed point problems on genuine Hadamard manifolds. ArticleDownload View PDF

A Generalized Inexact Proximal Point Method for Nonsmooth Functions that Satisfies Kurdyka Lojasiewicz Inequality

In this paper, following the ideas presented in Attouch et al. (Math. Program. Ser. A, 137: 91-129, 2013), we present an inexact version of the proximal point method for nonsmoth functions, whose regularization is given by a generalized perturbation term. More precisely, the new perturbation term is defined as a “curved enough” function of the … Read more

Generalized Inexact Proximal Algorithms: Habit’s/ Routine’s Formation with Resistance to Change, following Worthwhile Changes

This paper shows how, in a quasi metric space, an inexact proximal algorithm with a generalized perturbation term appears to be a nice tool for Behavioral Sciences (Psychology, Economics, Management, Game theory,…). More precisely, the new perturbation term represents an index of resistance to change, defined as a “curved enough” function of the quasi distance … Read more

The inexact projected gradient method for quasiconvex vector optimization problems

Vector optimization problems are a generalization of multiobjective optimization in which the preference order is related to an arbitrary closed and convex cone, rather than the nonnegative octant. Due to its real life applications, it is important to have practical solution approaches for computing. In this work, we consider the inexact projected gradient-like method for … Read more