A Trust Region Algorithm for Heterogeneous Multiobjective Optimization

This paper presents a new trust region method for multiobjective heterogeneous optimization problems. One of the objective functions is an expensive black-box function, for example given by a time-consuming simulation. For this function derivative information cannot be used and the computation of function values involves high computational effort. The other objective functions are given analytically … Read more

The proximal point method for locally Lipschitz functions in multiobjective optimization

This paper studies the constrained multiobjective optimization problem of finding Pareto critical points of vector-valued functions. The proximal point method considered by Bonnel et al. (SIAM J. Optim., 4 (2005), pp. 953-970) is extended to locally Lipschitz functions in the finite dimensional multiobjective setting. To this end, a new approach for convergence analysis of the … Read more

A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes

Multiobjective optimization has a significant number of real life applications. For this reason, in this paper, we consider the problem of finding Pareto critical points for unconstrained multiobjective problems and present a trust-region method to solve it. Under certain assumptions, which are derived in a very natural way from assumptions used by \citet{conn} to establish … Read more