Positive semidefinite matrix approximation with a trace constraint

We propose an efficient algorithm to solve positive a semidefinite matrix approximation problem with a trace constraint. Without constraints, it is well known that positive semidefinite matrix approximation problem can be easily solved by one-time eigendecomposition of a symmetric matrix. In this paper, we confirmed that one-time eigendecomposition is also sufficient even if a trace … Read more

A primal-dual interior point method for nonlinear semidefinite programming

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. By combining the primal barrier penalty function and the primal-dual barrier function, a new primal-dual merit function is proposed within the framework of the line search strategy. We show the global convergence property of our method. Finally some numerical … Read more