On Augmentation Algorithms for Linear and Integer-Linear Programming: From Edmonds-Karp to Bland and Beyond

Motivated by Bland’s linear-programming generalization of the renowned Edmonds-Karp efficient refinement of the Ford-Fulkerson maximum-flow algorithm, we discuss three closely-related natural augmentation rules for linear and integer-linear optimization. In several nice situations, we show that polynomially-many augmentation steps suffice to reach an optimum. In particular, when using “discrete steepest-descent augmentations” (i.e., directions with the best … Read more

Graver basis and proximity techniques for block-structured separable convex integer minimization problems

We consider N-fold 4-block decomposable integer programs, which simultaneously generalize N-fold integer programs and two-stage stochastic integer programs with N scenarios. In previous work [R. Hemmecke, M. Koeppe, R. Weismantel, A polynomial-time algorithm for optimizing over N-fold 4-block decomposable integer programs, Proc. IPCO 2010, Lecture Notes in Computer Science, vol. 6080, Springer, 2010, pp. 219–229], … Read more

Nonlinear Integer Programming

Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic.  The primary goal is … Read more

Pareto Optima of Multicriteria Integer Linear Programs

We settle the computational complexity of fundamental questions related to multicriteria integer linear programs, when the dimensions of the strategy space and of the outcome space are considered fixed constants. In particular we construct: 1. polynomial-time algorithms to exactly determine the number of Pareto optima and Pareto strategies; 2. a polynomial-space polynomial-delay prescribed-order enumeration algorithm … Read more