Spectral Residual Method for Nonlinear Equations on Riemannian Manifolds

In this paper, the spectral algorithm for nonlinear equations (SANE) is adapted to the problem of finding a zero of a given tangent vector field on a Riemannian manifold. The generalized version of SANE uses, in a systematic way, the tangent vector field as a search direction and a continuous real–valued function that adapts this … Read more

A Riemannian Conjugate Gradient Algorithm with Implicit Vector Transport for Optimization on the Stiefel Manifold

In this paper, a reliable curvilinear search algorithm for solving optimization problems over the Stiefel manifold is presented. This method is inspired by the conjugate gradient method, with the purpose of obtain a new direction search that guarantees descent of the objective function in each iteration. The merit of this algorithm lies in the fact … Read more

ON THE LIMITING PROPERTIES OF THE AFFINE-SCALING DIRECTIONS

We study the limiting properties of the affine-scaling directions for linear programming problems. The worst-case angle between the affine-scaling directions and the objective function vector provides an interesting measure that has been very helpful in convergence analyses and in understanding the behaviour of various interior-point algorithms. We establish new relations between this measure and some … Read more

Condition and complexity measures for infeasibility certificates of systems of linear inequalities and their sensitivity analysis

We begin with a study of the infeasibility measures for linear programming problems. For this purpose, we consider feasibility problems in Karmarkar’s standard form. Our main focus is on the complexity measures which can be used to bound the amount of computational effort required to solve systems of linear inequalities and related problems in certain … Read more