A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

DIFFERENCE FILTER PRECONDITIONING FOR LARGE COVARIANCE MATRICES

In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more