The condition number of a function relative to a set

The condition number of a differentiable convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is the square of the aspect ratio of a canonical ellipsoid associated to the function. Furthermore, the condition … Read more

A data-independent distance to infeasibility for linear conic systems

We offer a unified treatment of distinct measures of well-posedness for homogeneous conic systems. To that end, we introduce a distance to infeasibility based entirely on geometric considerations of the elements defining the conic system. Our approach sheds new light into and connects several well-known condition measures for conic systems, including {\em Renegar’s} distance to … Read more

A priori bounds on the condition numbers in interior-point methods

Interior-point methods are known to be sensitive to ill-conditioning and to scaling of the data. This paper presents new asymptotically sharp bounds on the condition numbers of the linear systems at each iteration of an interior-point method for solving linear or semidefinite programs and discusses a stopping test which leads to a problem-independent “a priori” … Read more

Bounds on Eigenvalues of Matrices Arising from Interior-Point Methods

Interior-point methods feature prominently among numerical methods for inequality-constrained optimization problems, and involve the need to solve a sequence of linear systems that typically become increasingly ill-conditioned with the iterations. To solve these systems, whose original form has a nonsymmetric 3×3 block structure, it is common practice to perform block Gaussian elimination and either solve … Read more

A smooth perceptron algorithm

The perceptron algorithm, introduced in the late fifties in the machine learning community, is a simple greedy algorithm for finding a solution to a finite set of linear inequalities. The algorithm’s main advantages are its simplicity and noise tolerance. The algorithm’s main disadvantage is its slow convergence rate. We propose a modified version of the … Read more


In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more

Convexity Conditions of Kantorovich Function and Related Semi-infinite Linear Matrix Inequalities

The Kantorovich function $(x^TAx)( x^T A^{-1} x)$, where $A$ is a positive definite matrix, is not convex in general. From a matrix or convex analysis point of view, it is interesting to address the question: When is this function convex? In this paper, we prove that the 2-dimensional Kantorovich function is convex if and only … Read more

A strong bound on the integral of the central path curvature and its relationship with the iteration complexity of primal-dual path-following LP algorithms

The main goals of this paper are to: i) relate two iteration-complexity bounds associated with the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming (LP), and; ii) study the geometrical structure of the central path in the context of LP. The first forementioned iteration-complexity bound is expressed in terms of an integral introduced by Sonnevend, Stoer and … Read more

Perturbations and metric regularity

A point x is an approximate solution of a generalized equation [b lies in F(x)] if the distance from the point b to the set F(x) is small. Metric regularity of the set-valued mapping F means that, locally, a constant multiple of this distance bounds the distance from x to an exact solution. The smallest … Read more

A New Conjugate Gradient Algorithm Incorporating Adaptive Ellipsoid Preconditioning

The conjugate gradient (CG) algorithm is well-known to have excellent theoretical properties for solving linear systems of equations $Ax = b$ where the $n\times n$ matrix $A$ is symmetric positive definite. However, for extremely ill-conditioned matrices the CG algorithm performs poorly in practice. In this paper, we discuss an adaptive preconditioning procedure which improves the … Read more