Immunity to Increasing Condition Numbers of Linear Superiorization versus Linear Programming

Given a family of linear constraints and a linear objective function one can consider whether to apply a Linear Programming (LP) algorithm or use a Linear Superiorization (LinSup) algorithm on this data. In the LP methodology one aims at finding a point that fulfills the constraints and has the minimal value of the objective function … Read more

The condition number of a function relative to a set

The condition number of a differentiable convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is the square of the aspect ratio of a canonical ellipsoid associated to the function. Furthermore, the condition … Read more

A data-independent distance to infeasibility for linear conic systems

We offer a unified treatment of distinct measures of well-posedness for homogeneous conic systems. To that end, we introduce a distance to infeasibility based entirely on geometric considerations of the elements defining the conic system. Our approach sheds new light into and connects several well-known condition measures for conic systems, including {\em Renegar’s} distance to … Read more

A priori bounds on the condition numbers in interior-point methods

Interior-point methods are known to be sensitive to ill-conditioning and to scaling of the data. This paper presents new asymptotically sharp bounds on the condition numbers of the linear systems at each iteration of an interior-point method for solving linear or semidefinite programs and discusses a stopping test which leads to a problem-independent “a priori” … Read more

Bounds on Eigenvalues of Matrices Arising from Interior-Point Methods

Interior-point methods feature prominently among numerical methods for inequality-constrained optimization problems, and involve the need to solve a sequence of linear systems that typically become increasingly ill-conditioned with the iterations. To solve these systems, whose original form has a nonsymmetric 3×3 block structure, it is common practice to perform block Gaussian elimination and either solve … Read more

A smooth perceptron algorithm

The perceptron algorithm, introduced in the late fifties in the machine learning community, is a simple greedy algorithm for finding a solution to a finite set of linear inequalities. The algorithm’s main advantages are its simplicity and noise tolerance. The algorithm’s main disadvantage is its slow convergence rate. We propose a modified version of the … Read more

DIFFERENCE FILTER PRECONDITIONING FOR LARGE COVARIANCE MATRICES

In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more

Convexity Conditions of Kantorovich Function and Related Semi-infinite Linear Matrix Inequalities

The Kantorovich function $(x^TAx)( x^T A^{-1} x)$, where $A$ is a positive definite matrix, is not convex in general. From a matrix or convex analysis point of view, it is interesting to address the question: When is this function convex? In this paper, we prove that the 2-dimensional Kantorovich function is convex if and only … Read more

A strong bound on the integral of the central path curvature and its relationship with the iteration complexity of primal-dual path-following LP algorithms

The main goals of this paper are to: i) relate two iteration-complexity bounds associated with the Mizuno-Todd-Ye predictor-corrector algorithm for linear programming (LP), and; ii) study the geometrical structure of the central path in the context of LP. The first forementioned iteration-complexity bound is expressed in terms of an integral introduced by Sonnevend, Stoer and … Read more

Perturbations and metric regularity

A point x is an approximate solution of a generalized equation [b lies in F(x)] if the distance from the point b to the set F(x) is small. Metric regularity of the set-valued mapping F means that, locally, a constant multiple of this distance bounds the distance from x to an exact solution. The smallest … Read more