An Active-Set Quadratic Programming Method Based On Sequential Hot-Starts

A new method for solving sequences of quadratic programs (QPs) is presented. For each new QP in the sequence, the method utilizes hot-starts that employ information computed by an active-set QP solver during the solution of the first QP. This avoids the computation and factorization of the full matrices for all but the first problem … Read more

Minimal Residual Methods for Complex Symmetric, Skew Symmetric, and Skew Hermitian Systems

While there is no lack of efficient Krylov subspace solvers for Hermitian systems, there are few for complex symmetric, skew symmetric, or skew Hermitian systems, which are increasingly important in modern applications including quantum dynamics, electromagnetics, and power systems. For a large consistent complex symmetric system, one may apply a non-Hermitian Krylov subspace method disregarding … Read more


In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more

Newton–Picard-Based Preconditioning for Linear-Quadratic Optimization Problems with Time-Periodic Parabolic PDE Constraints

We develop and investigate two preconditioners for a basic linear iterative splitting method for the numerical solution of linear-quadratic optimization problems with time-periodic parabolic PDE constraints. The resulting real-valued linear system to be solved is symmetric indefinite. We propose all-at-once symmetric indefinite preconditioners based on a Newton–Picard approach which divides the variable space into slow … Read more

The Application of an Oblique-Projected Landweber Method to a Model of Supervised Learning

This paper brings together a novel information representation model for use in signal processing and computer vision problems, with a particular algorithmic development of the Landweber iterative algorithm. The information representation model allows a representation of multiple values for a variable as well as expression of confidence. Both properties are important for effective computation using … Read more