Computation of Graphical Derivative for a Class of Normal Cone Mappings under a Very Weak Condition

Let $\Gamma:=\{x\in \R^n\, |\, q(x)\in\Theta\},$ where $q: \R^n\rightarrow\R^m$ is a twice continuously differentiable mapping, and $\Theta$ is a nonempty polyhedral convex set in $\R^m.$ In this paper, we first establish a formula for exactly computing the graphical derivative of the normal cone mapping $N_\Gamma:\R^n\rightrightarrows\R^n,$ $x\mapsto N_\Gamma(x),$ under the condition that $M_q(x):=q(x)-\Theta$ is metrically subregular at … Read more

Approximations and Generalized Newton Methods

We study local convergence of generalized Newton methods for both equations and inclusions by using known and new approximations and regularity properties at the solution. Including Kantorovich-type settings, our goal are statements about all (not only some) Newton sequences with appropriate initial points. Our basic tools are results of Klatte-Kummer (2002) and Kummer (1988, 1995), … Read more

Directional H”older metric subregularity and application to tangent cones

In this work, we study directional versions of the H\”olderian/Lipschitzian metric subregularity of multifunctions. Firstly, we establish variational characterizations of the H\”olderian/Lipschitzian directional metric subregularity by means of the strong slopes and next of mixed tangency-coderivative objects . By product, we give second-order conditions for the directional Lipschitzian metric subregularity and for the directional metric … Read more

Abstract Newtonian Frameworks and Their Applications

We unify and extend some Newtonian iterative frameworks developed earlier in the literature, which results in a collection of convenient tools for local convergence analysis of various algorithms under various sets of assumptions including strong metric regularity, semistability, or upper-Lipschizt stability, the latter allowing for nonisolated solutions. These abstract schemes are further applied for deriving … Read more


This note suggests the implicit function theorem for generalized equations, unifying Robinson’s theorem for strongly regular generalized equations and Clarke’s implicit function theorem for equations with Lipschitz-continuous mappings. Article Download View STRONGLY REGULAR NONSMOOTH GENERALIZED EQUATIONS (REVISED)