SDP bounds on the stability number via ADMM and intermediate levels of the Lasserre hierarchy

We consider the Lasserre hierarchy for computing bounds on the stability number of graphs. The semidefinite programs (SDPs) arising from this hierarchy involve large matrix variables and many linear constraints, which makes them difficult to solve using interior-point methods. We propose solving these SDPs using the alternating direction method of multipliers (ADMM). When the second … Read more

Cuts and semidefinite liftings for the complex cut polytope

We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices \(xx^{\mathrm{H}}\), where the elements of \(x \in \mathbb{C}^n\) are \(m\)th unit roots. These polytopes have applications in \({\text{MAX-3-CUT}}\), digital communication technology, angular synchronization and more generally, complex quadratic programming. For \({m=2}\), the complex cut polytope corresponds to the well-known cut polytope. … Read more

On solving the MAX-SAT using sum of squares

We consider semidefinite programming (SDP) approaches for solving the maximum satisfiabilityproblem (MAX-SAT) and the weighted partial MAX-SAT. It is widely known that SDP is well-suitedto approximate the (MAX-)2-SAT. Our work shows the potential of SDP also for other satisfiabilityproblems, by being competitive with some of the best solvers in the yearly MAX-SAT competition.Our solver combines … Read more

On the generalized $\vartheta$-number and related problems for highly symmetric graphs

This paper is an in-depth analysis of the generalized $\vartheta$-number of a graph. The generalized $\vartheta$-number, $\vartheta_k(G)$, serves as a bound for both the $k$-multichromatic number of a graph and the maximum $k$-colorable subgraph problem. We present various properties of $\vartheta_k(G)$, such as that the series $(\vartheta_k(G))_k$ is increasing and bounded above by the order … Read more