Risk-aware Logic-based Benders Decomposition for a Location-Allocation-Pricing Problem with Stochastic Price-Sensitive Demands

We consider a capacitated location-allocation-pricing problem in a single-commodity supply chain with stochastic price-sensitive demands, where the location, allocation and pricing decisions are made simultaneously. Under a general risk measure representing an arbitrary risk tolerance policy, the problem is modeled as a two-stage stochastic mixed-integer program with a translation-invariant monotone risk measure. To solve the … Read more

Two-stage and Lagrangian Dual Decision Rules for Multistage Adaptive Robust Optimization

In this work, we design primal and dual bounding methods for multistage adaptive robust optimization (MSARO) problems motivated by two decision rules rooted in the stochastic programming literature. From the primal perspective, this is achieved by applying decision rules that restrict the functional forms of only a certain subset of decision variables resulting in an … Read more

Network Migration Problem: A Hybrid Logic-based Benders Decomposition

Telecommunication networks frequently face technological advancements and need to upgrade their infrastructure. Adapting legacy networks to the latest technology requires synchronized technicians responsible for migrating the equipment. The goal of the network migration problem is to find an optimal plan for this process. This is a defining step in the customer acquisition of telecommunications service … Read more

Stochastic RWA and Lightpath Rerouting in WDM Networks

In a telecommunication network, Routing and Wavelength Assignment (RWA) is the problem of finding lightpaths for incoming connection requests. When facing a dynamic traffic, greedy assignment of lightpaths to incoming requests based on predefined deterministic policies leads to a fragmented network that cannot make use of its full capacity due to stranded bandwidth. At this … Read more

Lagrangian Dual Decision Rules for Multistage Stochastic Mixed Integer Programming

Multistage stochastic programs can be approximated by restricting policies to follow decision rules. Directly applying this idea to problems with integer decisions is difficult because of the need for decision rules that lead to integral decisions. In this work, we introduce Lagrangian dual decision rules (LDDRs) for multistage stochastic mixed integer programming (MSMIP) which overcome … Read more