On vehicle routing problems with stochastic demands — Generic integer L-shaped formulations

We study a broad class of vehicle routing problems in which the cost of a route is allowed to be any nonnegative rational value computable in polynomial time in the input size. To address this class, we introduce a unifying framework that generalizes existing integer L-shaped (ILS) formulations developed for vehicle routing problems with stochastic … Read more

Approximating value functions via corner Benders’ cuts

We introduce a novel technique to generate Benders’ cuts from a conic relaxation (“corner”) derived from a basis of a higher-dimensional polyhedron that we aim to outer approximate in a lower-dimensional space. To generate facet-defining inequalities for the epigraph associated to this corner, we develop a computationally-efficient algorithm based on a compact reverse polar formulation … Read more

Hardness of pricing routes for two-stage stochastic vehicle routing problems with scenarios

The vehicle routing problem with stochastic demands (VRPSD) generalizes the classic vehicle routing problem by considering customer demands as random variables. Similarly to other vehicle routing variants, state-of-the-art algorithms for the VRPSD are often based on set-partitioning formulations, which require efficient routines for the associated pricing problems. However, all these set-partitioning-based approaches have strong assumptions … Read more

A comparison of different approaches for the vehicle routing problem with stochastic demands

The vehicle routing problem with stochastic demands (VRPSD) is a well studied variant of the classic (deterministic) capacitated vehicle routing problem (CVRP) where the customer demands are given by random variables. Two prominent approaches for solving the VRPSD model it either as a chance-constraint program (CC-VRPSD) or as a two-stage stochastic program (2S-VRPSD). In this … Read more