The Branch-and-Bound Tree Closure

This paper investigates the a-posteriori analysis of Branch-and-Bound (BB) trees to extract structural information about the feasible region of mixed-binary linear programs. We introduce three novel outer approximations of the feasible region, systematically constructed from a BB tree. These are: a tight formulation based on disjunctive programming, a branching-based formulation derived from the tree’s branching … Read more

On vehicle routing problems with stochastic demands — Generic integer L-shaped formulations

We study a broad class of vehicle routing problems in which the cost of a route is allowed to be any nonnegative rational value computable in polynomial time in the input size. To address this class, we introduce a unifying framework that generalizes existing integer L-shaped (ILS) formulations developed for vehicle routing problems with stochastic … Read more

Approximating value functions via corner Benders’ cuts

We introduce a novel technique to generate Benders’ cuts from a conic relaxation (“corner”) derived from a basis of a higher-dimensional polyhedron that we aim to outer approximate in a lower-dimensional space. To generate facet-defining inequalities for the epigraph associated to this corner, we develop a computationally-efficient algorithm based on a compact reverse polar formulation … Read more

Interdiction of minimum spanning trees and other matroid bases

In the minimum spanning tree (MST) interdiction problem, we are given a graph \(G=(V,E)\) with edge weights, and want to find some \(X\subseteq E\) satisfying a knapsack constraint such that the MST weight in \((V,E\setminus X)\) is maximized. Since MSTs of \(G\) are the minimum weight bases in the graphic matroid of \(G\), this problem … Read more

Optimal counterfactual explanations for k-Nearest Neighbors using Mathematical Optimization and Constraint Programming

Within the topic of explainable AI, counterfactual explanations to classifiers have received significant recent attention. We study counterfactual explanations that try to explain why a data point received an undesirable classification by providing the closest data point that would have received a desirable one. Within the context of one the simplest and most popular classification … Read more

Hardness of pricing routes for two-stage stochastic vehicle routing problems with scenarios

The vehicle routing problem with stochastic demands (VRPSD) generalizes the classic vehicle routing problem by considering customer demands as random variables. Similarly to other vehicle routing variants, state-of-the-art algorithms for the VRPSD are often based on set-partitioning formulations, which require efficient routines for the associated pricing problems. However, all these set-partitioning-based approaches have strong assumptions … Read more

A comparison of different approaches for the vehicle routing problem with stochastic demands

The vehicle routing problem with stochastic demands (VRPSD) is a well studied variant of the classic (deterministic) capacitated vehicle routing problem (CVRP) where the customer demands are given by random variables. Two prominent approaches for solving the VRPSD model it either as a chance-constraint program (CC-VRPSD) or as a two-stage stochastic program (2S-VRPSD). In this … Read more

A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints

We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel integer programming problem which generalizes the 0-1 knapsack problem. In this problem, there are two knapsacks and \(n\) items. The objective is to select some items to pack into the first knapsack such that the maximum profit attainable from packing some of the … Read more

The complexity of branch-and-price algorithms for the capacitated vehicle routing problem with stochastic demands

The capacitated vehicle routing problem with stochastic demands (CVRPSD) is a variant of the deterministic capacitated vehicle routing problem where customer demands are random variables. While the most successful formulations for several deterministic vehicle-routing problem variants are based on a set-partitioning formulation, adapting such formulations for the CVRPSD under mild assumptions on the demands remains … Read more

The Arc-Item-Load and Related Formulations for the Cumulative Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) consists of finding the cheapest way to serve a set of customers with a fleet of vehicles of a given capacity. While serving a particular customer, each vehicle picks up its demand and carries its weight throughout the rest of its route. While costs in the classical CVRP are … Read more