On Second Order Optimality Conditions in Nonlinear Optimization

In this work we present new weak conditions that ensure the validity of necessary second order optimality conditions (SOC) for nonlinear optimization. We are able to prove that weak and strong SOCs hold for all Lagrange multipliers using Abadie-type assumptions. We also prove weak and strong SOCs for at least one Lagrange multiplier imposing the … Read more

Constant rank constraint qualifications: a geometric introduction

Constraint qualifications (CQ) are assumptions on the algebraic description of the feasible set of an optimization problem that ensure that the KKT conditions hold at any local minimum. In this work we show that constraint qualifications based on the notion of constant rank can be understood as assumptions that ensure that the polar of the … Read more

A Newton’s method for the continuous quadratic knapsack problem

We introduce a new efficient method to solve the continuous quadratic knapsack problem. This is a highly structured quadratic program that appears in different contexts. The method converges after O(n) iterations with overall arithmetic complexity O(n²). Numerical experiments show that in practice the method converges in a small number of iterations with overall linear complexity, … Read more

Differentiable exact penalty functions for nonlinear second-order cone programs

We propose a method to solve nonlinear second-order cone programs (SOCPs), based on a continuously differentiable exact penalty function. The construction of the penalty function is given by incorporating a multipliers estimate in the augmented Lagrangian for SOCPs. Under the nondegeneracy assumption and the strong second-order sufficient condition, we show that a generalized Newton method … Read more

Two new weak constraint qualifications and applications

We present two new constraint qualifications (CQ) that are weaker than the recently introduced Relaxed Constant Positive Linear Depen- dence (RCPLD) constraint qualification. RCPLD is based on the assump- tion that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set … Read more

A Practical Relative Error Criterion for Augmented Lagrangians

This paper develops a new error criterion for the approximate minimization of augmented Lagrangian subproblems. This criterion is practical in the sense that it requires only information that is ordinarily readily available, such as the gradient (or a subgradient) of the augmented Lagrangian. It is also “relative” in the sense of relative error criteria for … Read more

A relaxed constant positive linear dependence constraint qualification and applications

In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification from Minchenko and Stakhovski that was called RCR. We show that RCPLD is enough to ensure the convergence of an … Read more

A Gauss-Newton approach for solving constrained optimization problems using differentiable exact penalties

We propose a Gauss-Newton-type method for nonlinear constrained optimization using the exact penalty introduced recently by Andre and Silva for variational inequalities. We extend their penalty function to both equality and inequality constraints using a weak regularity assumption, and as a result, we obtain a continuously differentiable exact penalty function and a new reformulation of … Read more

Proximal Methods for Nonlinear Programming: Double Regularization and Inexact Subproblems

This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that … Read more

Using exact penalties to derive a new equation reformulation of KKT systems associated to variational inequalities

In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We … Read more