A general double-proximal gradient algorithm for d.c. programming

The possibilities of exploiting the special structure of d.c. programs, which consist of optimizing the difference of convex functions, are currently more or less limited to variants of the DCA proposed by Pham Dinh Tao and Le Thi Hoai An in 1997. These assume that either the convex or the concave part, or both, are … Read more

Gradient-type penalty method with inertial effects for solving constrained convex optimization problems with smooth data

We consider the problem of minimizing a smooth convex objective function subject to the set of minima of another differentiable convex function. In order to solve this problem, we propose an algorithm which combines the gradient method with a penalization technique. Moreover, we insert in our algorithm an inertial term, which is able to take … Read more

A forward-backward dynamical approach to the minimization of the sum of a nonsmooth convex with a smooth nonconvex function

We address the minimization of the sum of a proper, convex and lower semicontinuous with a (possibly nonconvex) smooth function from the perspective of an implicit dynamical system of forward-backward type. The latter is formulated by means of the gradient of the smooth function and of the proximal point operator of the nonsmooth one. The … Read more

Convergence rates for forward-backward dynamical systems associated with strongly monotone inclusions

We investigate the convergence rates of the trajectories generated by implicit first and second order dynamical systems associated to the determination of the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space. We show that these trajectories strongly converge with exponential rate to … Read more

A forward-backward-forward differential equation and its asymptotic properties

In this paper, we approach the problem of finding the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space via an implicit forward-backward-forward dynamical system with nonconstant relaxation parameters and stepsizes of the resolvents. Besides proving existence and uniqueness of strong global solutions … Read more

Second order forward-backward dynamical systems for monotone inclusion problems

We begin by considering second order dynamical systems of the from $\ddot x(t) + \Gamma (\dot x(t)) + \lambda(t)B(x(t))=0$, where $\Gamma: {\cal H}\rightarrow{\cal H}$ is an elliptic bounded self-adjoint linear operator defined on a real Hilbert space ${\cal H}$, $B: {\cal H}\rightarrow{\cal H}$ is a cocoercive operator and $\lambda:[0,+\infty)\rightarrow [0,+\infty)$ is a relaxation function depending … Read more

An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions

We propose a forward-backward proximal-type algorithm with inertial/memory effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. The sequence of iterates generated by the algorithm converges to a critical point of the objective function provided an appropriate regularization of the objective satisfies the Kurdyka-Lojasiewicz inequality, which is … Read more

An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems

We investigate the convergence of a forward-backward-forward proximal-type algorithm with inertial and memory effects when minimizing the sum of a nonsmooth function with a smooth one in the absence of convexity. The convergence is obtained provided an appropriate regularization of the objective satisfies the Kurdyka-\L{}ojasiewicz inequality, which is for instance fulfilled for semi-algebraic functions. ArticleDownload … Read more

An inertial alternating direction method of multipliers

In the context of convex optimization problems in Hilbert spaces, we induce inertial effects into the classical ADMM numerical scheme and obtain in this way so-called inertial ADMM algorithms, the convergence properties of which we investigate into detail. To this aim we make use of the inertial version of the Douglas-Rachford splitting method for monotone … Read more

Forward-Backward and Tseng’s Type Penalty Schemes for Monotone Inclusion Problems

We deal with monotone inclusion problems of the form $0\in Ax+Dx+N_C(x)$ in real Hilbert spaces, where $A$ is a maximally monotone operator, $D$ a cocoercive operator and $C$ the nonempty set of zeros of another cocoercive operator. We propose a forward-backward penalty algorithm for solving this problem which extends the one proposed by H. Attouch, … Read more