On Test Sets for Nonlinear Integer Maximization

A finite test set for an integer maximization problem enables us to verify whether a feasible point attains the global maximum. We establish in this paper several general results that apply to integer maximization problems with nonlinear objective functions. CitationOperations Research Letters 36 (2008) 439–443ArticleDownload View PDF

Nonlinear Matroid Optimization and Experimental Design

We study the problem of optimizing nonlinear objective functions over matroids presented by oracles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization. We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids. Our work is … Read more

MINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL

In the context of a variation of the standard UFL (Uncapacitated Facility Location) problem, but with an objective function that is a separable convex quadratic function of the transportation costs, we present some techniques for improving relaxations of MINLP formulations. We use a disaggregation principle and a strategy of developing model-specific valid inequalities (some nonlinear), … Read more