Mixed-Integer Reformulations of Resource-Constrained Two-Stage Assignment Problems

The running time for solving a mixed-integer linear optimization problem (MIP) strongly depends on the number of its integral variables. Bader et al. [Math. Progr. 169 (2018) 565–584] equivalently reformulate an integer program into an MIP that contains a reduced number of integrality constraints, when compared to the original model. Generalizing the concept of totally … Read more

Subset selection in sparse matrices

In subset selection we search for the best linear predictor that involves a small subset of variables. From a computational complexity viewpoint, subset selection is NP-hard and few classes are known to be solvable in polynomial time. Using mainly tools from discrete geometry, we show that some sparsity conditions on the original data matrix allow … Read more

Extension Complexity Lower Bounds for Mixed-Integer Extended Formulations

We prove that any mixed-integer linear extended formulation for the matching polytope of the complete graph on $n$ vertices, with a polynomial number of constraints, requires $\Omega(\sqrt{\sfrac{n}{\log n}})$ many integer variables. By known reductions, this result extends to the traveling salesman polytope. This lower bound has various implications regarding the existence of small mixed-integer mathematical … Read more

Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane

We complete the complexity classification by degree of minimizing a polynomial in two variables over the integer points in a polyhedron. Previous work shows that in two variables, optimizing a quadratic polynomial over the integer points in a polyhedral region can be done in polynomial time, while optimizing a quartic polynomial in the same type … Read more

Graver basis and proximity techniques for block-structured separable convex integer minimization problems

We consider N-fold 4-block decomposable integer programs, which simultaneously generalize N-fold integer programs and two-stage stochastic integer programs with N scenarios. In previous work [R. Hemmecke, M. Koeppe, R. Weismantel, A polynomial-time algorithm for optimizing over N-fold 4-block decomposable integer programs, Proc. IPCO 2010, Lecture Notes in Computer Science, vol. 6080, Springer, 2010, pp. 219–229], … Read more

Intractability of approximate multi-dimensional nonlinear optimization on independence systems

We consider optimization of nonlinear objective functions that balance $d$ linear criteria over $n$-element independence systems presented by linear-optimization oracles. For $d=1$, we have previously shown that an $r$-best approximate solution can be found in polynomial time. Here, using an extended Erdos-Ko-Rado theorem of Frankl, we show that for $d=2$, finding a $\rho n$-best solution … Read more

Nonlinear Integer Programming

Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic.  The primary goal is … Read more

Nonlinear optimization for matroid intersection and extensions

We address optimization of nonlinear functions of the form $f(Wx)$~, where $f:\R^d\rightarrow \R$ is a nonlinear function, $W$ is a $d\times n$ matrix, and feasible $x$ are in some large finite set $\calF$ of integer points in $\R^n$~. Generally, such problems are intractable, so we obtain positive algorithmic results by looking at broad natural classes … Read more

Nonlinear Optimization over a Weighted Independence System

We consider the problem of optimizing a nonlinear objective function over a weighted independence system presented by a linear-optimization oracle. We provide a polynomial-time algorithm that determines an r-best solution for nonlinear functions of the total weight of an independent set, where r is a constant that depends on certain Frobenius numbers of the individual … Read more