On an iteratively reweighted linesearch based algorithm for nonconvex composite optimization

In this paper we propose a new algorithm for solving a class of nonsmooth nonconvex problems, which is obtained by combining the iteratively reweighted scheme with a finite number of forward–backward iterations based on a linesearch procedure. The new method overcomes some limitations of linesearch forward–backward methods, since it can be applied also to minimize … Read more

Barzilai-Borwein-like rules in proximal gradient schemes for ℓ1−regularized problems

We propose a novel steplength selection rule in proximal gradient methods for minimizing the sum of a differentiable function plus an ℓ1-norm penalty term. The proposed rule modifies one of the classical Barzilai-Borwein steplength, extending analogous results obtained in the context of gradient projection methods for constrained optimization. We analyze the spectral properties of the … Read more

A nested primal–dual FISTA-like scheme for composite convex optimization problems

We propose a nested primal–dual algorithm with extrapolation on the primal variable suited for minimizing the sum of two convex functions, one of which is continuously differentiable. The proposed algorithm can be interpreted as an inexact inertial forward–backward algorithm equipped with a prefixed number of inner primal–dual iterations for the proximal evaluation and a “warm–start” … Read more

An abstract convergence framework with application to inertial inexact forward-backward methods

In this paper we introduce a novel abstract descent scheme suited for the minimization of proper and lower semicontinuous functions. The proposed abstract scheme generalizes a set of properties that are crucial for the convergence of several first-order methods designed for nonsmooth nonconvex optimization problems. Such properties guarantee the convergence of the full sequence of … Read more

A stochastic first-order trust-region method with inexact restoration for finite-sum minimization

We propose a stochastic first-order trust-region method with inexact function and gradient evaluations for solving finite-sum minimization problems. At each iteration, the function and the gradient are approximated by sampling. The sample size in gradient approximations is smaller than the sample size in function approximations and the latter is determined using a deterministic rule inspired … Read more

New convergence results for the inexact variable metric forward-backward method

Forward–backward methods are valid tools to solve a variety of optimization problems where the objective function is the sum of a smooth, possibly nonconvex term plus a convex, possibly nonsmooth function. The corresponding iteration is built on two main ingredients: the computation of the gradient of the smooth part and the evaluation of the proximity … Read more

Convergence of Inexact Forward–Backward Algorithms Using the Forward–Backward Envelope

This paper deals with a general framework for inexact forward–backward algorithms aimed at minimizing the sum of an analytic function and a lower semicontinuous, subanalytic, convex term. Such framework relies on an implementable inexactness condition for the computation of the proximal operator, and a linesearch procedure which is possibly performed whenever a variable metric is … Read more